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non-deposit sites (Fig. 3), allowing an

oversampling of the geophysical data

to build the training and test

databases. Two databases were

created for training and testing

purposes, one without a mineral

system approach (DB 1) and the

other taking a porphyry-epithermal

mineral system approach (DB 2), to

examine the best way to utilize this

data. (Table 1).

The region of the Camaquã Basin and the Sul-riograndense Shield,

in the State of Rio Grande do Sul, has several ore occurrences

cataloged by Brazilian Geological Service (CPRM), and in the region of

Caçapava do Sul there are registered at least 60 deposits or

occurrences of base and precious metals scattered over 5,000 km

(Fig. 1). Aiming to rationalize mineral research in this region, a mineral

prospective mapping (Bonham-Carter et al., 1988), was carried out with

the aid of supervised machine learning algorithms, airborne gamma-

spectrometry and magnetometry, deposits and mineral occurrences

sites location, and non-deposits sites created based on rules (Carranza

et al., 2008).
After the training and testing stage, the algorithm trained with DB 1

was unable to produce a prospective map, so some adjustment was

necessary to make sure the algorithm would successfully recognize the

signature of potential sites. While with DB 2, in their best parameters

settings, SVM and ANN had a lower performance or presented

overfitting when achieving higher accuracy rates (Fig. 5).

The best algorithm and database for training the final model were

chosen evaluating (Fig. 4) by its performance score based on accuracy,

recall, precision and F1 score alongside confusion matrix, and receiver

operating characteristic (ROC) curve (Nykänen et al., 2015).

Figure 1: Geological map

of the Camaquã

Supergroup and the Basin

basement units containing

the known mineral

occurrences used to train

the models by machine

learning in the study area

inside the highlighted

square.

Figure 4: Flowchart used for the construction of the final Mineral Prospective Map

Figure 6: Contribution of each input in

terms of decrease in accuracy for the best

model achieved (RF) with DB2.

Figure 5: Final test parameters of the best-fitted models

by 10-fold cross-validation, without overfitting for DB2.

This work proposed to test ANN, RF and SVM to create a

prospective map in the region of Caçapava do Sul. RF was the best

due to its generalization ability, high accuracy and low false-negative

rate. Database comparison shows that mineral systems must be taken

into consideration in order to create a data-driven potential map. The

region may contain unknown deposits, and the known occurrences and

deposits appears to be connected with the intrusive rocks.
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3. METHODS

Orange Data Mining (Demsar

et al., 2013), a machine learning

interface based on python, was

used to test three machine

learning algorithms to produce a

mineral prospective map: Support

Vector Machine (SVM) (Vapnik,

1995), Random Forest (RF)

(Breiman, 2001) and Artificial

Neural Network (ANN) (Al-Bulushi

et al., 2012).

Figure 2: Maps of the input data. a) Analytical

Signal (AS). b) eTh. c) eU. d) K. e) F-parameter.

f) K/Th rate.

Geophysical data from the study area (Fig. 2) were compiled into a

mesh of points 100 meters far away from each other, containing

normalized values of eU, eTh, K, K/eTh ratio, F-parameter and Analytic

Signal (AS). Buffers of 200 meters were used around the deposits, and

Figure 3: Deposit and non-deposit points used in

the training and test of the machine learning

algorithms.

Table 1: Databases used for testing the best way to

use the data with the machine learning algorithms.

The RF adjusted with 80 trees, and 20 as the limit of depth, was

the best performing algorithm (Fig. 6) when tested through 10-fold

cross-validation with the accuracy of 0.915 and 9.2% of the false-

negative rate, without overfitting. The final product was a Mineral

Prospective Map, where 9,36% of its area was classified as high

prospective, with more than 90% of the probability, and most of the

training points remained correctly classified (Fig. 7).

Figure 7: Mineral Prospective Map

generated by the model trained

with database 2 and the Random

Forest algorithm. With the most

prospectable areas in red and the

least ones in blue.
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