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Big Data: “A wide-ranging field of research that deals with large datasets. A key challenge in big data is working
out how to generate useful insights from the data without inappropriately compromising the privacy of the

people to whom the data relates.” [https://www.turing.ac.uk/news/data-science-and-ai-glossary)
The V’s in Big Data [nttps://www.oracle.com/uk/big-data/what-is-big-data/]

Volume: The amount of data matters. With big data, you'll have to process high
volumes of low-density, unstructured data.

Velocity: Velocity is the fast rate at which data is received and (perhaps) acted on.

Normally, the highest velocity of data streams directly into memory versus being
written to disk.

Variety: Variety refers to the many types of data that are available. Traditional
data types were structured and fit neatly in a relational database.

Value: Data has intrinsic value. But it’s of no use until that value is discovered.

Veracity: How truthful is your data—and how much can you rely on it?

Legacy vs. historical data: obsolete formats and not accessible
promptly vs. not maintained and not easy to update

[https://eos.org/editors-vox/analyzing-big-earth-
data-progress-challenges-opportunities]
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Figure 2. Private investment in artificial intelligence companies
worldwide (billions of US dollars).
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In the context of mineral/geological exploration
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Example: From potential Big to ‘regular’ data

It was a compilation of proprietary (industry) historical drilling

, although quite simple in structure

ALL sheets

Plethora of NaNs/Nulls
Missing units on headers
Unit conversion necessary (a problem if it is not noticed)

Survey sheet

IDs differ non-systematically from collar
(some) Missing ID, location flags, dip, azimuth, reading depth

Lithology and Stratigraphy

Inconsistent naming across geographic areas

inconsistent/different fields

Different number of entries (varying in thousands)
entry ID varies

Missing key info (e.g., X, Y)

Selected collar table:

- started with >4,500 DHs
- Ends up with ~1,200 DHs that can be used without

imputation and guess-work

e Assay sheet

>30 quantitative fields
Fields with potential relationships (e.g., imputation)
Entries missing key info
Some attributes are ambiguous/uncertain
Fields contemplating ‘sum’ attributes
*  Whatis summed in here?
* Analytical Sum vs. user-created sum?

- Started with more than 750,000 entries
- Two sample groups identified

3 attributes: >113 k entries (DH ~ 1,200)
10 attributes: >32k entries (~160 DHs)

Final scene:

Poor documentation and delivery can drastically
reduce reliability

Took >2 months to ‘break’ data and understand
deficiencies

Took >2 months to devise mitigation plan
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Environment

Design

Pathologies in (historical, potentially big) exploration data and its uses
Describe the issues found to pave way to mitigation.

Five-level approach:

i) Survey Design: the original intent to acquire the data was not the same
as the current interest.

ii) File system: issues on how data is organized (macro-level), stored and
to be accessed across platforms/interfaces. File System , Software and
Hardware

iii) Within-file: structural/framework issues within individual files

iv) Content: issues affecting actual data content, its potential
interpretation and understanding

v) Development and interpretation environment: where and how the
(Big )data is being processed/analyzed to turn into information/value;
how results are validated against benchmarks

Synergy between the (big) data set, the origin of the data, how it is stored,
what it is represented and where actions are being taken.



Pathologies: Survey design level — on data acquisition, philosophy and target
- Data acquired to solve one specific problem/commodity/geo-body may not be

necessarily helpful for other challenges.
- Data sheets that are not compatible in terms of detection limits and spatial resolution.

- Sampling only the immediate ore environment (and forget that it forms due to complex
relationships that may lie outside of it)

- Sometimes... you can’t really get the data you want at all (4 S £ € RS ¥, land access,
tenements) so you get what you can

- Technical standards and detection limits

Drillhole .
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Pathologies: Development and interpretation environment - The
software/hardware computing ecosystem used to
crunch/process/transform to explore and get information from the (big)
data.

Development:
Combining what the humans need from data to how it can be
represented by the computer environment.
Velocity? Architecture? Financial costs? Energy costs?

Interpretation:

What are the benchmarks used to constrain the interpretation
of the Big Data solution?

Classic Geochem vectors vs agnostic data exploration?

Compare BD/ML/AI outputs to mathematical models of
geological processes is key

Quite verbose...

Local application setup; CPU, GPU; Distributed computing, Parallel computing;
Cloud systems; Python, Julia, R; Spark, Hadoop; AWS Amazon, Collab; [data] silos,
warehouses

Information theory; Theoretical/Mathematical modelling (e.g., petrology);
Geological proxies (e.g., Alteration Indexes, Cu/(Cu+Ni), Pt/Pd)

High

Usze of Scientific Knowledge

Lirwy

Theory-based Models

Theory-guided
Data Science Models

Data Science Models

Use of Data
Karpatne et al. (2017)

High



Wrap-up

Acknowledge, understand (and respect) limitations of the perceived existing

pathologies [survey design, file system, within-file, content, environment] on the IR —

(big?) data set and ecosystem g =

Mitigate problems first to achieve better interpretations (intelligence delivery) Y

and performance. The algorithm
Troubleshooting can be a ... pain & model
Make sure you have enough to run experiments/analysis (solve the problem).

Make sure your ML approach is aligned with geological concepts. A |]|]|]u _
ML-models should provide relationships that are feasible on the realm of Tzﬁénéim;?;er
geology (how samples behave compared to geological benchmarks) Al M knowledge

In case documentation was not provided... create and update it.
Document the decisions you make to restrict/flesh out the (big?) data

Upcycling of legacy/historical data is here and now.
Secure diligent preservation of data being acquired at present.

Learn from other business areas
Project Management Institute (PMI): Data Management Practices

Garbage in
2 bit Garbage out

Rest assured... DS/ML/AI wont make geologists obsolete... but they need to change
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