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I Introduction INDUSTRY 4.0
4t Industrial Revolution 2000s
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I Introduction

Al/Machine Learning

Systems and simulations
capable of providing decisive
geological information for
exploration and mining

Sensors that collect and
transmit data during the
extraction and processing of
the ore

MINING 4.0 Sime

%f’ Virtual Reality

-
-

-
/0 BRASILEI XBRAZILIAN SYMPOSIUM
DE EXPLORAGAO MINERAL ON MINERAL EXPLORATION

N\

! e Robotics/Drones

Autonomous robots to perform
repetitive and strenuous tasks.
Loaders, excavators, drills,
etc...

Simulations and training.
Control, maintenance and
inspection of equipment
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MINERAL EXPLORATION TARGETTING

IA/Machine Learning

u Mineral Prospectivity Mapping

\

@ Geochemical Exploration

f) Drill Core Data Integration
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I Al Applications to Mineral Exploration Targeting

| Mineral Prospectivity Mapping

Integrate aerogeophysical, geological, and geochemical data to generate
prospectivity maps, assisting in target selection at the province/district scale.

Publications over the last years show that ML models produces better
results than traditional methods as WofE. XGBoost, SVM, and Random
Forests are among the best performing algorithms.

Important aspects:
* Feature engineering has a big impact on results

* Data balancing techniques should be used to increase the number of
labeled samples

* Explainable Al algorithms can identify important relationships between
the dataset and the mineralized zones
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Mineral Prospectivity Mapping
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MODELING OF CU-AU PROSPECTIVAITY IN THE CARAJAS MINERAL PROVINCE (BRAZIL)
THROUGH MACHINE LEARNING: DEALING WITH IMBALANCED TRAINING DATA
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Validation: stratified 3-fold
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*Proximity to contacts between Mesoarchean and Proterozoic stratigraphic units, Neoarchean and Proterozoic stratigraphic units,
as well as contacts between Paleoproterozoic and Proterozoic stratigraphic units.

Ore Geology Reviews 124 (2020) 103611

ELSEVIER

Contents lists available at ScienceDirect

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeorev

Modeling of Cu-Au prospectivity in the Carajas mineral province (Brazil)
through machine learning: Dealing with imbalanced training data

Elias Martins Guerra Prado™”, Carlos Roberto de Souza Filho”, Emmanuel John M. Carranza®,

Jodo Gabriel Motta®

*CPRM - Geological Survey of Brazil, Brasilia, Distrite Federal, Brazil
" Instirute of Geosciences, State University af Campinas (UNICAMP), Campinas, Sdo Paulo, Brazil
© University of KwaZulu-Natal, Westville Campus, Durban, South Africa
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ARTICLE INFO

Keywords:

Mineral prospectivity mapping

Carajds mineral province

Imbalanced training data

Synthetic minority over-sampling technique

ABSTRACT

Machine learning (ML) is becoming an appealing tool in various fields of Earth Sciences, especially in mineral
prospectivity mapping (MPM) to support mineral exploration. ML algorithms are designed to assume a relatively
balanced amount of training data for the estimation of the decision boundaries between the classes of interest
(i.e., in MPM: mineralized- and non-mineralized locations). However, in MPM the numbers of mineralized and

non-mineralized locations are naturally imbalanced, as the number of known mineral deposit occurrences (as a
F i lizad i 1 31 #1; 11 178 1] th +h. b £ i lizad 1
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Mineral Prospectivity Mapping
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Mineral Prospectivity Mapping
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@ Geochemical Exploration

= Use of geochemical data for vectoring towards the mineralization

@ ML models have shown great potential for the processing and classifying
geochemical datasets

Important aspects:

Dataset organization and pre-processing is usually time consuming

e Specific normalization techniques need to be applied (BoxCox, CLR)
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| Geochemical Exploration

EXAMPLES:

Metallogenic fertility classification of arc
magmas (Nathwani et al., 2022)

Prediction of rock precursors for mass
balance calculation (Trépanier et al., 2016)

Prediction of unknown elemental
concentrations (Zhang et al., 2022)

Mineralium Deposita (2022) 57:1143-1166
https://dol.org/10.1007/500126-021-01085-9

REGULAR ARTICLE 4‘)

Chack far
updates

Machine learning for geochemical exploration: classifying
metallogenic fertility in arc magmas and insights into porphyry
copper deposit formation

Chetan L. Nathwani'? - Jamie J. Wilkinson'* - George Fry* - Robin N. Armstrong’ - Daniel J. Smith* -
Christian Ihlenfeld®

Computers & Gensciences 89 [2016) 32-43

Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Precursors predicted by artificial neural networks for mass balance @r_,.o_\.m,r-\.
calculations: Quantifying hydrothermal alteration in volcanic rocks

Sylvain Trépanier™®, Lucie Mathieu ?, Réal Daigneault “*, Stéphane Faure®

1 Advanced Geochemical Exploration Knowledge Using Machine Learning: Prediction of
?  Unknown Elemental Concentrations and Operational Pricritization of Re-analysis

3  Campaigns

4 Steven E. Zhang*®, Julie E. Bourdeau®®, Glen T. Nwalla"', Yousef Ghorbanl*
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| Drill Core Data Integration

Integration of dense drill core datasets to extract information about the
distribution of the mineralized zones

@ ML models can identify complex patterns which classical methods are not
able to identify in such dense datasets

Important aspects:
 Deep Neural Networks usually perform better
e Core scanning system enables the fast acquisition of training datasets

 Models can be used by autonomous systems to assist in ore sorting or
contaminant detection
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EXAMPLES:

@ Prediction of Cu grade by means of
hyperspectral data (Prado et al., 2022)
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| Al Aﬁﬂ'iﬁti@ﬂs to Mineral EXpIGIT ation Targeting Kpamsomunte,

Journal of South American Earth Sciences 116 (2022) 103815

Drill Core Data Integration
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Drill Core Data Integration

EXAMPLES:

Prediction of mineralization by means of
geochemical and petrophysical data (da Silva

et al., 2022)
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I Concluding Remarks

@ Al and ML are becoming indispensable tools in mineral exploration

ML models can be used to extract valuable information from datasets at different scales

L4 The next step is developing generalized workflows that integrate all stages of mineral
exploration and User Interfaces (Ul) that allow the use of these methods by non-
specialists

L4 Techniques that can be used to integrate Industry 4.0 technologies with the mineral
industry contribute to the solid and sustainable development of mineral exploration
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