Província Aurífera Alto Guaporé (MT):

Metalogênese, controles da mineralização e implicações para a exploração em escala regional

Alto Guaporé Gold Province (MT):

metalogenesis, ore controls and implications to exploration on regional scale

Rodrigo P. Melo

Alto Guaporé Gold Province

Alto Guaporé Gold Province (AGGP)

Deformed Aguapei

and Sunsas groups

- \checkmark ~200km-long belt located in the southern portion of Amazon Craton, close to Brazil (MT) - Bolivia boundary, with at least 20 known gold deposits and occurrences;
- Two operating mines (Pau a Pique and Ernesto) central portion;
- ✓ Two disabled mines (S. Vicente e S. Francisco) northern portion;
- Past production + reserves + resources (last 40 \checkmark years) = **1.8 Moz**;
- Most economically important early- \checkmark Neoproterozoic orogenic gold province;

Alto Guaporé Province

Geology and location

 \times

Central AGGP

Geological settings

- Guapé Intrusive suite (964-914 Ma): felsic anorogenic granites;
- Aguapeí group: Marine and continental siliciclastic metasediments overlying Mesoproterozoic basement;

- Morro cristalina Fm.: fluvial sandstones;

- Vale da Promissão Fm.: psamintes and pelites;

-Fotuna Fm.: Basal sandstone and conglomerates

 Rio Alegre terrane: Mesoproterozoic upper greenschist to granulite facies volcanosedimentary sequences (oceanic);

* Alto Jauru Terrane

-Mesoproterozoic (1470 – 1420 Ma) granitic batholiths (Santa Helena and Pindaituba suites);

-Paleoproterozoic (1780 – 1720 Ma) metavolcanosedimentary sequences (Alto Jauru group) and ortogneiss and migmatites (Alto Guaporé metamorphic complex).

Geologic map of the central portion of Alto Guaporé Gold Belt (AGGP)

- * Two "mining district" located 40km apart:
- Pau a Pique
- Ernesto

 (S_2)

 Structural settings: three deformational phases developed due to evolution from compression (1150 – 950Ma) to transpression (950 – 900Ma) :

DE EXPLORAÇÃO MINERA

 $\mathbf{D_1}$ – folding of $\mathbf{S_o}$ with NW-SE fold axis and axial planar foliation ($\mathbf{S_1}$)

 $\mathbf{D_2}$ – NW-strinking strike-slip shearing and thrusting

D₃- NE-striking faults (coeval with gold)

Geologic map of the central portion of Alto Guaporé Gold Belt (AGGP)

Central AGGP

Pau a Pique deposit

NE (D)

500m

50 100

50 100

Shear zones

Drill hole

NF (B)

Ore zone

Cross sections and map of Pau a Pique deposit PQ-47 PQ-49 8267500 (C) SW (B) PQ-35A ore shell SIMEXMIN (A) SW \times Ore 268500 269000 269500 Legend Biotite-rich mylonitic zone representing sheared and hydrothermally altered basement Muscovite-rich mylonitic zone representing sheared and hydrothermally altered contact Silicified breccia Breccia 🔲 Quartz veins Neoproterozoic metasediments (Aguapei Gr.) 125 250 375 500m Phyllite L200N Cross Section Fine-grained metasandstone SAD69 - 21S Medium- to coarse-grained metasandstone Soil cover (cross sections) Metaconglomerate ∼ Geological Contacts Modelled ore (cross-sections) **Basement Units** Mesoproterozoic basement (Pindaituba intrusive suite: diorite, tonalite, and granodiorite) Mesoproterozoic basement (metabasic rocks)

- **Ore body:** is steeply dipping and narrow (500m long; >15m width; 400m in * depth;
- Hosted by mica-rich altered sheared contact between the foot wall * metaconglomerate and arkosic metasandstone and the hanging wall Mesoproterozoic igneous basement (1461 Ma);

Schematic block diagrams summarizing the relationship between the main structures

Veining and hydrothermal alteration

Pau a Pique

- * Ore: coarse pyrite disseminated throughout the layers of mica and associated swarms of laminated quartz veins;
- * Mineralization style: disseminated and vein-type ore
- * Veining: swarms of laminated quartz veins with highly sulfidized margin and less deformed quartz albite veins
- Hydrothermal gangue phases includes: biotite, muscovite, Fe-Ti oxides (magnetite, rutile and ilmenite), albite, chlorite, calcite and apatite.

Ernesto deposits

Geology and structural settings

Two main ore bodies located at different stratigraphic levels. $\mathbf{\dot{v}}$

SIMEXMIN

 \times

Schematic block diagrams summarizing the relationship between the main structures

- The larger ore body is in the deeper levels, at the contact between Fortuna sedimentary rocks and the underlying tonalite basement (1465 Ma). *
- Similar to Pau a Pique, it is a narrow and tabular feature, and is **hosted** along shear zone which consist of 5- to 25-m-thick layer of hydrothermal muscovite \div with disseminated coarse pyrite, and associated laminated guartz veins

Ernesto deposits

Geology and structural settings

The other ore body is located at the **intermediate level**. *

SIMEXMIN

 \times

Schematic block diagrams summarizing the relationship between the main structures

- It is an irregularly shaped but stratabound mineralized zone with maximum 50m width, that dips ~25° to NNE. \Leftrightarrow
- Stratigraphically **located** at the base of Fortuna formation, in a ~20m thick metaconglomerate layer; *

Veining and hydrothermal mineralogy

Veining and hydrothermal alteration

- Ore: zone of gold-rich quartz veins and veinlets as well, the silicified wall rock, with disseminated coarse-grained pyrite;
- Mineralization style: stratabound, disseminated and veintype ores;
- Veining: slightly deformed veins along WNW-striking fracture system, composed of milky quartz. Typically pyrite-bearing, centimeter scale in width, although form meter-wide pods of difuse quartz hosted by silicified wall rock.
- Hydrothermal gangue phases includes: Fe-Ti oxides (magnetite; rutile and ilmenite) and muscovite.

Ore-related mineralogy

Ore-related mineralogy

* Gold:

- **Microinclusions** of native gold or in association with Te, Ag and Bi in pyrite porphyroblasts;
- Grains of visible gold are in quartz veins or in association with muscovite and chlorite;

* Sulfide: Pyrite

-Very minor **chalcopyrite** and lesser **galena** (mainly on Pau a Pique) as inclusions or in fractures of pyrite;

As – Co – Mo – Cu are the main elevated trace elements;

Photos of trails of aqueous-carbonic fluid inclusions in ore bearing quartz surrounding gold-bearing pyrite crystals and Laser spectroscopy showing volatiles composition

Metalogenesis

Fluid inclusions

Assemblages are in trails of secondary inclusions

Three types:

- FLINC1: interpreted to represent the mineralizing fluid due to its close relationship with gold and gold-bearing pyrite;
- low salinity, aqueous carbonic inclusions (H₂O + CO₂ + N₂ + NaCl + minor KCl, NaHCO₃ and NaSO₄)
- <u>Pau a Pique</u>: nearly constant VCO₂ (~20 vol %)
- <u>Ernesto</u>: strongly variable VCO₂ (10-70 vol %) trapping of heterogeneous fluid due to immiscibility
- FLINC2: High density, low salinity aqueous Inclusions (H₂O + NaCl)
- FLINC3: High salinity (13-17 wt % NaCl equiv) aqueous inclusions (H₂O + NaCl) only in Pau a Pique

Sime mineral Sime Sio Brasileiro Se exploração mineral

Chlorite geothermometry and calculates isochores for FLINC1

Metalogenesis

 Crystallization temperature of hydrothermal chlorite range between 280 and 310 °C– obtained from three empirical calibrations

Isochore calculations:

- Molar volume varied from 20 to 25 cm³/mol in both deposits
- Projection of the average Chlorite crystallization temperature against calculated isochores gives an estimated trapping pressure of ~2.5 Kbar, which correspond to 8 to 10 Km at lithostatic pressure.

Summary of Hydrogen and Oxygen isotope data

 δD vs $\delta^{18}O$ plots showing measured values for hydrothermal muscovite (circles) and two possible interpretations of the data. (A) Calculated values for H2O in the hydrothermal fluid (diamonds: equilibration T assumed to be 300°C) fall in the magmatic and metamorphic fields of Taylor (1997) for the Ernesto deposit but extend lower in δD for the Pau-a-Pique deposit, which is consistent with mixing between magmatic/metamorphic fluids and exchanged meteoric fluids during ore formation. (B) The arcuate shape of the Pau-a-Pique data is consistent with small amounts of isotope exchange between muscovite and meteoric water during post-gold exhumation of the deposit (open-system exchange model indicates water-to-rock mass ratios ≤ 0.05).

Metalogenesis

Stable isotopes

- Relatively homogeneous fluid precipitating ore-related quartz (less susceptible to reset).
- Calculated fluid (300°C) from quartz veins Within orogenic gold;
- δD show exceptionally broad range (-108 to -47‰). Orogenic gold deposits are rarely bellow -80‰ (only when methane is involved). Two scenarios:

-(A) Influx of surface water and mixing (linear array);

-(B) Exchange between hydrothermal muscovite and surface water during exhumation (arcuate array).

- **D Pyrite \delta^{34}S isotope**: -1.2 to +5.3‰
- Within the range of orogenic gold deposits worldwide (broad range of $\delta^{34}S$) crustal source

 40 Ar/ 39 Ar ages of hydrothermal muscovites. (A) Plateau age of 920.4 ± 0.8 Ma of barren shear zone within metaconglomerate of the Fortuna Formation. (B) Integrated age of 922.9 ± 1.3 Ma of orebearing quartz vein (Vqz4) of the Ernesto deposit. (C) 40Ar/39Ar plateau age of 924.7 ± 1.1 Ma of muscovite-rich mylonitic zone from high-grade ore of the Pau-a-Pique deposit. (D) Diagram comparing previous 40Ar/39Ar and K/Ar ages from former workers with the new ages published in this study (dashed red line), favoring a much more restricted interval for the hydrothermal system.

Metalogenesis

- Muscovite and sericite is present in almost all reported mineralized veins systems of the studied province;
- It is spatially and genetically related to the gold.
- It is interpreted as being formed during fluid circulation along the shear zones, presumably during the transpressional reactivation (D₃);
- ⁴⁰Ar/³⁹Ar data (920.4 924.9 Ma) combined with existing data gives an estimate interval between 920 and 928 Ma for the hydrothermal event, favoring a more restrict age interval, which is consistent with the relatively short interval of less than 10 m.y. of activity for orogenic gold systems associated with evolutions of many metamorphic belts.

Metalogenesis

Fluid and metal source

- Stable isotope data suggest a metamorphic fluid source from devolatilization of crustal sequences;
- Devolatiziation of underlying basement rocks is not a feasible model because these are upper greenchsit to granulite facies rocks that record Mesoproterozoic (1320 1380 Ma) Ar/Ar and K/Ar ages of hornblende and biotite (e.g., Tohver et al., 2006);
- Metamorphism of fine grained sedimentary rocks (Vale da Promissão Fm.) is the most likely event leading fluid and metal release to form the gold deposits;

Structural control on location of the largest AGGP deposits

- Structural geometry on location of province's largest deposits are very similar to what is reported in orogenic gold provinces worldwide (e.g., Groves et al., 2018)
- (1) Both Pau a Pique and Ernesto (~40km apart) are both located on jogs of a first-order structure;
- ✓ The belt has a system of late, ~70°, cross accommodation faults that rotate the more rigid component that probably generate dilatational zones in the earlier (S₂) structures:
- ✓ Both, Pau a Pique and the Ernesto (inferior level), are located in the sheared margins between rigid pre-ore granitoids and more ductile metasedimentary sequences, and which heterogeneous stress must have been generated due to variations in geometry of the igneous rock;
- In Ernesto (intermediate level): a discordant to bedding parallel fracture system filled with ore-bearing veins represents the low minimum stress zone formed within highly competent layer of conglomerate where the sequences bend around competent tonalite

Structural control on location of the largest AGGP deposits

✓ In São Vicente deposit mineralized veins are:

-Suhorizontal extensional veins that truncated isoclinaly folded layers of metarenite and the deposits is located in the center of 1-km wide zone of tightly folded rocks formed by high angle reverse faults

In **São Francisco deposit** mineralized veins are:

-NE-dipping and subhorizontal occuring within the hinge zone of an anticline and veining is controlled by fracturing and high-angle reverse faulting suggesting an overprint within the earlier flexural folding as critical orerelated mechanism.

Largest deposits are repetitive, distant 35-40 km apart;

Exploration implications

- Exploration works should be focused on structurally favorable areas:
 - -regional anticlines;
 - -sheared margins between more ductile metasediments and the more rigid pre-ore igneous rocks or volcanosedimentary sequences;
- ★ There are also long segments of the belt (> 40km) with no reported deposits → e.g., between Pau a Pique and Dom Mario deposit in Bolivia;
- This study dealt with only one branch of the much wider Western Amazon belt.

Early Neoproterozoic Gold Deposits of the Alto Guaporé Province, Southwestern Amazon Craton, Western Brazil

Rodrigo Prudente de Melo,^{1,†} Marcos Aurélio Farias de Oliveira,² Richard J. Goldfarb,³ Craig A. Johnson,⁴ Erin E. Marsh,⁴ Roberto Perez Xavier,⁵ Leandro Rocha de Oliveira,⁶ and Leah E. Morgan⁴

Obrigado!

#SIMEXMIN2022