

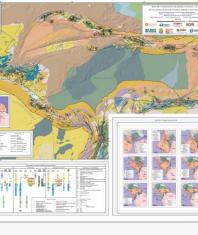
METALLOGENIC MAP OF SOUTH AMERICA 1:5.000.000

Martín R. Gozalvez

Servicio Geológico Minero Argentino (SEGEMAR) Coordinador Grupo de Expertos en Metalogenia– ASGMI

November 2022

ASSOCIATION OF IBEROAMERICAN GEOLOGICAL AND MINING SURVEYS (ASGMI)



Group of Experts on Metallogenics and Mineral Resources (GEMET) Objective: to become a reference nucleus in the knowledge of the mineral resources of Ibero-America, contributing to the enhancement of the mining potential of the region through the development and dissemination of basic and specialized information on the subject.

The Geological Surveys of Latin America have assumed the commitment to provide complete and consistent information on non-fuel mineral resources. Its ordering and analysis constitute a tool of great value for mining exploration and the evaluation of the potential of mineral resources not yet discovered.

SGM

INTERNATIONAL

GEOCHEMISTRY

GEOLOGICAL HERITAGE

MUSEUMS NETWORK

MINING ENVIRONMENTAL

ARTISANAL AND SMALL

LIABILITIES

SCALE MINING

METALLOGENY AND MINERAL RESOURCES

GEOLOGICAL HAZARDS

HYDROGEOLOGY

GEOGRAPHICAL

INFORMATION SYSTEM

REGIONAL GEOLOGY AND

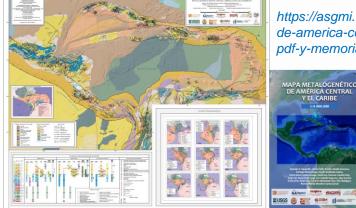
GEOLOGICAL MAPPING

COMMUNICATION

MARINE GEOLOGY

COOPERATION

https://asqmi.org/



GROUP OF EXPERTS ON METALLOGENICS AND MINERAL RESOURCES (GEMET)

PROJECTS:

Metallogenetic Map of Central America and the Caribbean (1:4,000,000)

 \checkmark Finalized

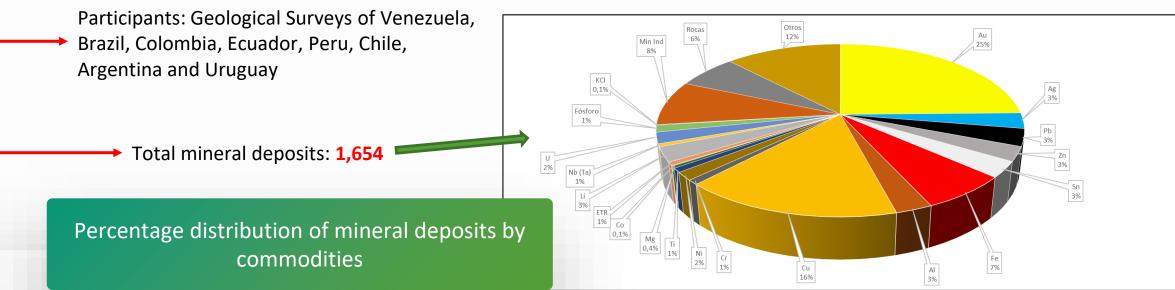
https://asgmi.org/mapa-metalogeneticode-america-central-y-el-caribe-mapa-enpdf-y-memoria/

Update of the Metallogenetic Map of South America (1:5,000,000)

✓ Completion date: December 2022

Map of Critical Minerals of Latin America

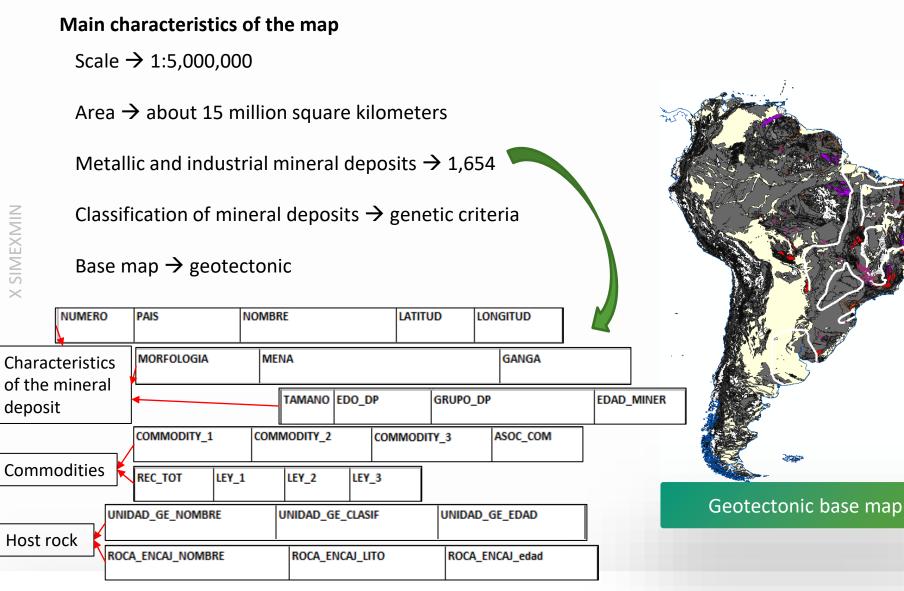
Estimated completion date: March 2024 \checkmark


1:5.000.000

Introduction

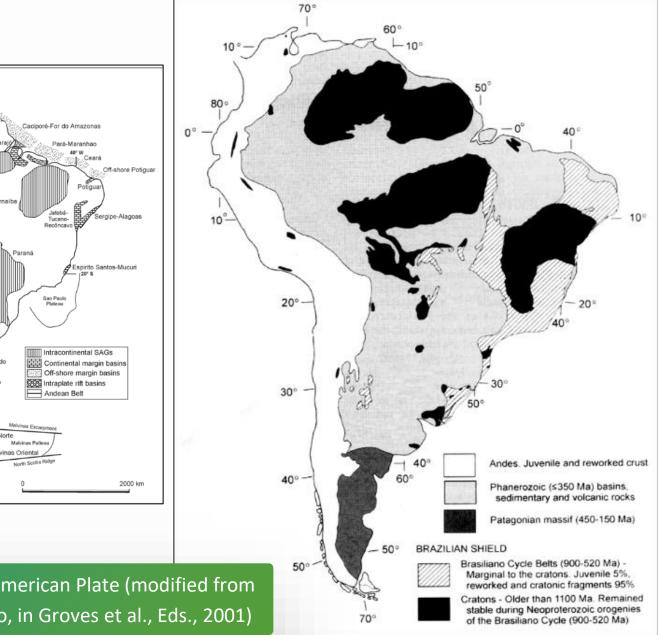
Metallogenetic Map of South America (1:5,000,000). 1st Ed. 1985 Commission for the Geological Map of the World (CGMW)

Metallogenetic Map of South America (1:5,000,000). 2nd Ed. 2005 - Commission for the Geological Map of the World (CGMW)/ Association of Ibero-American Geological and Mining Surveys (ASGMI)


Update of the Metallogenetic Map of South America (1:5,000,000). 2022 - Association of Ibero-American Geological and Mining Surveys (ASGMI)

1:5.000.000

	Deposits associated with mafic and ultramafic intrusions in tectonical stable areas
0	Deposits associated with mafic and ultramafic intrusions in tectonical unstable areas
\bigtriangledown	Deposits associated with alkaline rocks and systems
\Box	Deposits associated with mafic continental volcanism
0	Pegmatites
\bigcirc	Deposits associated with granites
☆	Porphyry type deposits
ර	Metasomatic deposits (including greisens and skarns)
\triangle	Deposits associated with intermediate to acid volcanics and subvolcanics in a continental domain
0	Deposits associated with submarine volcanism and volcanosediment marine sequences (it includes massive sulfides and Sedex mineraliza- tions)
\sim	Deposits associated with clastic sediments
A.	Deposits associated with carbonate sediments
\sim	Deposits associated with chemical sediments
Z	Deposits associated with biogenic sediments
	Deposits associated with dehydration and metamorphic segregation fluids
\square	Deposits associated with metamorphic crystallization
\Box	Residual deposits
D	Placer deposits
	Classification of Deposits


1:5.000.000

Salta-Lomas de Olmedo

Geotectonic overview

The South American Plate consists of two main geotectonic domains: the South American Platform that covers 15 million km² and includes major Precambrian tectonic provinces, and the Andean Belt. Phanerozoic sedimentary basins developed under particular plate-tectonic regimes, small cratonic cores and marginal belts can be differentiated

Sedimentary basins in the Southamerican platform (After Milani and Thomaz filho, in Cordani et al., Eds., 2000)

Geotectonic domains in the South American Plate (modified from Hartmann and de Medeiros Delgado, in Groves et al., Eds., 2001)

1:5.000.000

Metallogenic provinces, districts and belts

The analysis of the distribution of mineral deposits in South America shows their spatial distribution relationship within the various geological settings.

GOLD

Cratonic areas Brasiliano Belts Andean Belt Patagonia Terrane

AGE	DEFORMATION	Ma
QUATERNARY	-	1.6-0
PLIOCENE		5-1.6
MIOCENE	7	16-5
OLIGOCENE-LOWER MIOCENE	ANDEAN OROGENY	28-16
EOCENE-OLIGOCENE		43-28
PALEOCENO-EOCENO		65-43
CRETACEOUS		135-65
JURASSIC		205-135
PERMIAN-TRIASIC		290-205
CARBONIFEROUS		355-290
DEVONIAN	CHANIC OROGENY	355
DEVONIAN		410-355
SILURIAN		438-410
CAMBRIAN-ORDOVICIAN	OCLOVIC OROGENY	438
CAMBRIAN-ORDOVICIAN		543-438
NEOPROTEROZOIC	BRASILIAN OROGENY	600-543
NEOFROTEROZOIC		1000-600
	GRENVILLIAN OROGENY	1000
MESOPROTEROZOIC		1600-100
		1800-160
		2000-180
PALEOPROTEROZOIC	TRANSAMAZONIAN OROGENY	2000
FALEOPROTEROZOIC	[2200-200
		2500-220
	CARAJAS OROGENY	2600-250
ARCHEAN	[2750-260
		2850-275
		3000-285
		3500-300

1:5.000.000

Metallogenic provinces, districts and belts

The analysis of the distribution of mineral deposits in South America shows their spatial distribution relationship within the various geological settings.

COPPER AND MOLYBDENUM

Andean Belt Cratonic areas

AGE	DEFORMATION	Ma
QUATERNARY		1.6-0
PLIOCENE		5-1.6
MIOCENE		16-5
OLIGOCENE-LOWER MIOCENE	ANDEAN OROGENY	28-16
EOCENE-OLIGOCENE		43-28
PALEOCENO-EOCENO		65-43
CRETACEOUS		135-65
JURASSIC		205-135
PERMIAN-TRIASIC		290-205
CARBONIFEROUS	1	355-290
DEVONIAN	CHANIC OROGENY	355
DEVONIAN		410-355
SILURIAN		438-410
	OCLOYIC OROGENY	438
CAMBRIAN-ORDOVICIAN		543-438
NEOPROTEROZOIC	BRASILIAN OROGENY	600-543
NEOPROTEROZOIC		1000-600
	GRENVILLIAN OROGENY	1000
MESOPROTEROZOIC		1600-1000
		1800-1600
		2000-1800
BAL FORDOTEDOTOIO	TRANSAMAZONIAN OROGENY	2000
PALEOPROTEROZOIC		2200-2000
		2500-2200
	CARAJAS OROGENY	2600-2500
ARCHEAN		2750-2600
		2850-2750
		3000-2850
		3500-3000

1:5.000.000

Metallogenic provinces, districts and belts

The analysis of the distribution of mineral deposits in South America shows their spatial distribution relationship within the various geological settings.

TIN AND TUNGSTEN

Cratonic areas
Brasiliano Belts
Andean Belt

AGE	DEFORMATION	Ma
QUATERNARY		1.6-0
PLIOCENE		5-1.6
MIOCENE		16-5
OLIGOCENE-LOWER MIOCENE	ANDEAN OROGENY	28-16
EOCENE-OLIGOCENE		43-28
PALEOCENO-EOCENO		65-43
CRETACEOUS		135-65
JURASSIC		205-135
PERMIAN-TRIASIC		290-205
CARBONIFEROUS		355-290
DEVONIAN	CHANIC OROGENY	355
DEVONIAN		410-355
SILURIAN		438-410
CAMBRIAN-ORDOVICIAN	OCLOYIC OROGENY	438
CAMBRIAN-ORDOVICIAN		543-438
NEOPROTEROZOIC	BRASILIAN OROGENY	600-543
NEOFROTEROZOIC		1000-600
	GRENVILLIAN OROGENY	1000
MESOPROTEROZOIC		1600-1000
		1800-1600
		2000-1800
PALEOPPOTEROZOIC	TRANSAMAZONIAN OROGENY	2000
PALEOPROTEROZOIC		2200-2000
		2500-2200
	CARAJAS OROGENY	2600-2500
		2750.2800
ARCHEAN		2850-2750
		3000-2850
		3500-3000

W and Sn Provinces, Districts and Belts in South America

1:5.000.000

Metallogenic provinces, districts and belts

The analysis of the distribution of mineral deposits in South America shows their spatial distribution relationship within the various geological settings.

IRON AND MANGANESE

Cratonic areas
Brasiliano Belts
Andean Belt

AGE	DEFORMATION	Ma
QUATERNARY		1.6-0
PLIOCENE		5-1.6
MIOCENE	7	16-5
OLIGOCENE-LOWER MIOCENE	ANDEAN OROGENY	28-16
EOCENE-OLIGOCENE		43-28
PALEOCENO-EOCENO		65-43
CRETACEOUS		135-65
JURASSIC		205-135
PERMIAN-TRIASIC	7	290-205
CARBONIFEROUS	1	355-290
DEVONIAN	CHANIC OROGENY	355
DEVONIAN	_	410-355
SILURIAN		438-410
CAMBRIAN-ORDOVICIAN	OCLOVIC OROGENY	438
CAMBRIAN-ORDOVICIAN		543-438
NEOPROTEROZOIC	BRASILIAN OROGENY	600-543
		1000-600
	GRENVILLIAN OROGENY	1000
MESOPROTEROZOIC		1600-1000
		1800-1600
	7	2000-1800
PALEOPPOTEROZOIC	TRANSAMAZONIAN OROGENY	2000
		2200-2000
		2500-2200
	CARAJAS OROGENY	2600-2500
ARCHEAN		2750-2600
		2850-2750
		3000-2850
		3500-3000

Fe and Mn Provinces, Districts and Belts in South America

1:5.000.000

Metallogenic provinces, districts and belts

The analysis of the distribution of mineral deposits in South America shows their spatial distribution relationship within the various geological settings.

NIOBIUM, TANTALUM, BERYLIUM, RARE EARTHS AND LITHIUM

Cratonic areas Alkaline Provinces

AGE	DEFORMATION	Ma
QUATERNARY		1.6-0
PLIOCENE		5-1.6
MIOCENE		16-5
OLIGOCENE-LOWER MIOCENE	ANDEAN OROGENY	28-16
EOCENE-OLIGOCENE		43-28
PALEOCENO-EOCENO		65-43
CRETACEOUS		135-65
JURASSIC		205-135
PERMIAN-TRIASIC		290-205
CARBONIFEROUS	1	355-290
DEVONIAN	CHANIC OROGENY	355
DEVONIAN		410-355
SILURIAN		438-410
CAMBRIAN-ORDOVICIAN	OCLOYIC OROGENY	438
CAMBRANCORDOVICIAN		543-438
NEOPROTEROZOIC	BRASILIAN OROGENY	600-543
HEOR ROTEROEDIO		1000-600
	GRENVILLIAN OROGENY	1000
MESOPROTEROZOIC		1600-1000
		1800-1600
		2000-1800
PALEOPROTEROZOIC	TRANSAMAZONIAN OROGENY	2000
TALEO NOTENOZOIO		2200-2000
		2500-2200
	CARAJAS OROGENT	2000-2000
ARCHEAN		2750-2600
		2850-2750
		3000-2850
		3500-3000

Brasiliano Belts Andean Belt

> Nb-Ta-Be, REE and Li Provinces, Districts and Belts in South America

1:5.000.000

South America mineral's potential

The analysis of the total resources and their distribution indicates that South America includes some of the richest metallogenic provinces in the world:

- The richest Cu-Mo province in the world (Chile and Peru) 50% of the world's resources
- One of the most extensive and rich Sn provinces in the world (Bolivia). Brazil and Bolivia's combined resources are the largest in the world
- ✤ One the richest Sb belts in the world (Bolivia): 3rd largest reserve in the world
- The most important Li resources in the world (Argentina, Chile and Bolivia) 60% of world's resources
- ✤ One of the richest Borates province in the world (Argentina) the 5th largest in the world
- The world's 4th magnesite reserve in the world (Brazil)

South American hosts some of the largest deposits in the world:

- The largest accumulation of hypogene Sn (Llallagua, Bolivia) 5% of the world's reserves
- The largest Ag accumulation (Cerro Rico de Potosi, Bolivia) 20% of world's reserves
- The largest Porphyry Cu deposit (El Teniente, Chile) 10% of the world's reserves
- The largest Nb deposit (Seis Lagos, Brazil) >90% of the world's reserves
- One of the largest Fe districts in the world (Quadrilátero Ferrífero, Brazil) 10% of world's reserve
- The largest Li accumulation (Atacama, Chile) 42% of world's reserve

Other significant commodities are:

- ✓ 30% of Au world's reserves
- ✓ 20% of Talc world's reserves
- ✓ 15% of Barite world's reserves
- ✓ 15% of Potash world's reserves
- ✓ 10% of Graphite world's reserves
- ✓ 10% of Bi world's reserves

Obrigado!

#SIMEXMIN2022